23 research outputs found

    Field Measurements in Determining Incumbent Spectrum Utilization and Protection Criteria in Wireless Co-existence Studies

    Get PDF
    Studies of spectrum sharing and co-existence between different wireless communication systems are important, as the current aim is to optimize their spectrum utilization and shift from static exclusive spectrum allocation to more dynamic co-existence of different systems within same frequency bands. The main goal of this thesis is to provide measurement methodologies for obtaining realistic results in modeling incumbent spectrum utilization and in determining incumbent protection criteria. The following research questions are considered in this thesis: Q1) How should field measurements be conducted and used to model incumbent spectrum utilization? Q2) How should field measurements be conducted and used to determine protection criteria for incumbents in a co-existence scenario with mobile broadband? and Q3) Which licensing methods and technological solutions are feasible to enable spectrum sharing in frequency bands with incumbents? To answer to Q1, this thesis describes the development of a spectrum observatory network concept created through international collaboration and presents measurement methodologies, which allow to obtain realistic spectrum occupancy data over geographical areas using interference map concept. A cautious approach should be taken in making strong conclusions from previous single fixed location spectrum occupancy studies, and measurements covering larger geographical areas might be needed if the measurement results are to be used in making spectrum management decisions. The field interference measurements considered in Q2 are not covered well in the current research literature. The measurements are expensive to conduct as they require substantial human resources, test network infrastructure, professional level measurement devices and radio licenses. However, field measurements are needed to study and verify hypotheses from computer simulations or theoretical analyses in realistic operating conditions, as field measurement conditions can not or are not practical to be adequately modeled in simulations. This thesis proposes measurement methodologies to obtain realistic results from field interference measurements, taking into account the propagation environments and external sources of interference. Less expensive simulations and laboratory measurements should be used both to aid in the planning of field measurements and to complement the results obtained from field measurements. Q3 is investigated through several field interference measurement campaigns to determine incumbent protection criteria and by analyzing the spectrum observatory data to determine the occupancy and trends in incumbent spectrum utilization. The field interference measurement campaigns have been conducted in real TV White Space, LTE Supplemental Downlink and Licensed Shared Access test network environments, and the obtained measurement results have been contributed to the development of the European spectrum regulation. In addition, field measurements have been conducted to contribute to the development and technical validation of the spectrum sharing frameworks. This thesis also presents an overview of the current status and possible directions in spectrum sharing. In conclusion, no single spectrum sharing method can provide universally optimal efficiency in spectrum utilization. Thus, an appropriate spectrum sharing framework should be chosen taking into account both the spectrum utilization of the current incumbents and the future needs in wireless communications.Siirretty Doriast

    Licensed Shared Access Evolution to Provide Exclusive and Dynamic Shared Spectrum Access for Novel 5G Use Cases

    Get PDF
    This chapter studies the Licensed Shared Access (LSA) concept, which was initially developed to enable the use of the vacant spectrum resources in 2.3–2.4 GHz band for mobile broadband (MBB) through long-term static licenses. The LSA system was developed to guarantee LSA licensees a predictable quality of service (QoS) and exclusive access to shared spectrum resources. This chapter describes the development and architecture of LSA for 2.3–2.4 GHz band and compares the LSA briefly to the Spectrum Access System (SAS) concept developed in the USA. 5G and its new use cases require a more dynamic approach to access shared spectrum resources than the LSA system developed for 2.3–2.4 GHz band can provide. Thus, a concept called LSA evolution is currently under development. The novel concepts introduced in LSA evolution include spectrum sensing, short-term license periods, possibility to allocate spectrum locally, and support for co-primary sharing, which can guarantee the quality of service (QoS) from spectrum perspective. The chapter also describes a demonstration of LSA evolution system with spectrum user prioritization, which was created for Programme Making and Special Events (PMSE) use case

    TV White Space Network Interference Measurements and Application Pilot Trials. Final report from field measurement campaigns and application pilot trials in WISE projects during 2011-2014

    Get PDF
    This report describes TV white space network measurements and trials conducted in Finnish WISE projects during 2011-2014. A TV White Space test network environment was developed and built in Turku, Finland, to aid in standardization and to demonstrate technical capabilities of TV white space networks. The test network environment was the first in Europe having a geolocation database to control the frequency use. This report introduces interference measurements conducted to aid in the standardization work in CEPT/ECC SE43 group. These measurements and the work in the SE43 group served as base information in the creation of an ETSI harmonised standard for TV white space devices, ETSI EN 301 598. The report also presents two application pilot trials conducted to demonstrate the technical feasibility of TV white space networks: a long-term video surveillance trial in Turku and Helsinki area public transport ticket sales and transit information screens trial.Siirretty Doriast

    Use of wireless communication networks in digitalization of factory environments

    Full text link
    [EN] Wireless communications are rapidly taking an important role in factory environment. The current Wi-Fi technologies struggle to meet the requirements of industrial factories, for example with regard to latency and security. The emerging 5G communication networks are the first networks expected to meet such requirements. Private networks are owned by the factories themselves. Private networks can utilize 5G technologies to tailor the networks to meet the exact demands within the factory environment and guarantee that the factories can use the whole bandwidth for their own use. This concurrently increases the data security as the data does not need to be deliveved over public networks. This paper describes the latest developments in 5G with regard to private networks and Industry 4.0, which is the name given to the digitalization, automatization and data exchange trend currently ongoing in factory environments. In this paper we describe a private cellular network we have installed inside a factory building. This network has been trialed with wireless pyrometer measurement data transmission and environmental surveillance of a measurement laboratory. This paper analyses the suitability of private networks for these use cases and discusses in general which applications would benefit the most from private wireless networks.Rautava, T.; Paavola, J.; Hallio, J.; Kalliovaara, J.; Jokela, T. (2019). Use of wireless communication networks in digitalization of factory environments. En Proceedings 5th CARPE Conference: Horizon Europe and beyond. Editorial Universitat Politècnica de València. 147-153. https://doi.org/10.4995/CARPE2019.2019.10050OCS14715

    Coexistence of DTT and Mobile Broadband: A Survey and Guidelines for Field Measurements

    Get PDF
    This article provides a survey and a general methodology for coexistence studies between digital terrestrial television (DTT) and mobile broadband (MBB) systems in the ultra high frequency (UHF) broadcasting band. The methodology includes characterization of relevant field measurement scenarios and gives a step-by-step guideline on how to obtain reliable field measurement results to be used in conjunction with link budget analyses, laboratory measurements, and simulations. A survey of potential European coexistence scenarios and regulatory status is given to determine feasible future use scenarios for the UHF television (TV) broadcasting band. The DTT reception system behavior and performance are also described as they greatly affect the amount of spectrum potentially available for MBB use and determine the relevant coexistence field measurement scenarios. Simulation methods used in determining broadcast protection criteria and in coexistence studies are briefly described to demonstrate how the information obtained from field measurements can be used to improve their accuracy. The presented field measurement guidelines can be applied to any DTT-MBB coexistence scenarios and to a wide range of spectrum sharing and cognitive radio system coexistence measurements.</p

    700 MHz Band LTE Uplink Interference to DTT Reception System Cabling

    No full text
    This paper studies the shielded screening attenuation of consumer-grade digital terrestrial television (DTT)antenna coaxial cables and presents a measurement campaign to determine their vulnerability to interference originating from uplink traffic of a nearby Long Term Evolution (LTE)user equipment (UE) operating on the 700 MHz frequency band. The interference scenario is novel as the LTE uplink traffic on the 700 MHz band is significantly closer in frequency to the DTT transmissions than previously with the 800 MHz LTE. The measurement results show that the antenna coaxial cables with weakest shielded screening attenuation can be interfered in realistic usage scenarios when the LTE UE uplink traffic is transmitted on the lowest frequencies in the 700 MHz band and the DTT channel highest in frequency is used

    Coexistence of DTT and mobile broadband:A survey and guidelines for field measurements

    No full text
    This article provides a survey and a general methodology for coexistence studies between digital terrestrial television (DTT) and mobile broadband (MBB) systems in the ultra high frequency (UHF) broadcasting band. The methodology includes characterization of relevant field measurement scenarios and gives a step-by-step guideline on how to obtain reliable field measurement results to be used in conjunction with link budget analyses, laboratory measurements, and simulations. A survey of potential European coexistence scenarios and regulatory status is given to determine feasible future use scenarios for the UHF television (TV) broadcasting band. The DTT reception system behavior and performance are also described as they greatly affect the amount of spectrum potentially available for MBB use and determine the relevant coexistence field measurement scenarios. Simulation methods used in determining broadcast protection criteria and in coexistence studies are briefly described to demonstrate how the information obtained from field measurements can be used to improve their accuracy. The presented field measurement guidelines can be applied to any DTT-MBB coexistence scenarios and to a wide range of spectrum sharing and cognitive radio system coexistence measurements

    Trials of 60 GHz radio for a future 5G New Radio (NR) solution for high capacity CCTV offload and multimedia transfer

    No full text
    This paper studies the radio interface performance of a 60 GHz radio in both indoor and outdoor conditions. The target is to assess its suitability for resolving emerging needs in the public transport, especially, in rail traffic, to transfer large amounts of data from vehicles to the stations and vice versa, during a short period of time. 60 GHz could also be ideal band for the wireless inter-carriage connection between the railcars. The related services and requirements are defined in the 5G specification Mobile Communication System for Railways - TS22.289. 60 GHz band is also included in the 5G standard as an unlicensed band
    corecore